WORKING TOWARD ACHIEVEMENT OF STANDARDS

Foundation- Number \& Algebra:

Students connect number names and numerals with sets of up to 20 elements, estimate the size of these sets, and use counting strategies to solve problems that involve comparing, combining and separating these sets. They match individual objects with counting sequences up to and back from 20. Students order the first 10 elements of a set. They represent, continue and create simple patterns.

Level 1- Number \& Algebra:

Students count to and from 100 and locate these numbers on a number line. They partition numbers using place value and carry out simple additions and subtractions, using counting strategies. Students recognise Australian coins according to their value. They identify representations of one half. Students describe number sequences resulting from skip counting by $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . They continue simple patterns involving numbers and objects with and without the use of digital technology.

Foundation- Statistics and Probability:

Students identify measurement attributes in practical situations and compare lengths, masses and capacities of familiar objects. They order events, explain their duration, and match days of the week to familiar events. Students identify simple shapes in their environment and sort shapes by their common and distinctive features. They use simple statements and gestures to describe location.

Level 1- Statistics \& Probability

Students describe data displays. They ask questions to collect data and draw simple data displays. Students classify outcomes of simple familiar events.

Foundation- Measurement \& Geometry:
Students sort familiar categorical data into sets and use these to answer yes/no questions and make simple true/false statements about the data.

Level 1- Measurement \& Geometry:

Students use informal units of measurement to order objects based on length, mass and capacity. They tell time to the halfhour and explain time durations. Students describe twodimensional shapes and three-dimensional objects. They use the language of distance and direction to move from place to place.

Links to Capability \& Digital Technologies Content Descriptors	
Critical and Creative Thinking By the end of Level 2, students use and give examples of different kinds of questions. Students generate ideas that are new to them and make choices after considering personal preferences. Students identify words that indicate components of a point of view. They use reasons and examples for different purposes. Students express and describe thinking activity. They practise some learning strategies. Students demonstrate and articulate some problem-solving approaches.	Digital Technologies By the end of Level 2, students identify how common digital systems are used to meet specific purposes. Students use digital systems to represent simple patterns in data in different ways and collect familiar data and display them to convey meaning. Students design solutions to simple problems using a sequence of steps and decisions. They create and organise ideas and information using information systems and share these in safe online environments.

Teaching and Learning Resources:	Teaching \& Learning Approaches - non-negotiables
- Nelson Maths - Booker - Teaching Primary Mathematics	- Daily Reading \& Writing sessions that integrate Word Study and Speaking and Listening
- Essential Assessment	- Gradual Release of Responsibility/Instructional Model
- Inquisitive	- Use of ongoing assessment and data to target teaching - Use of ongoing feedback
- Big Ideas	- Visible learning intentions and success criteria
	- Individual reading and writing goals for all students
	- Individual Learning Plan (ILP) for 12 months above /below /EAL /PSD /Koorie /Discipline
	- Exploratory Learning
	- Explicit modelling
	- Small group instruction
	- Independent learning
	- Reflective learning

Special Events/Dates:

- ANZAC day
- Mother's Day
- Queens Birthday

Performance Outcome/Product of Learning:
Students will:

- Increase their Independence as learners
- Fluency of number facts
- Efficient mental strategies
- Efficient written strategies
- Relating to real life situations
- Risk taking with learning
- Productive peer learning

Vocabulary expectations (English specific)
Money: coins, notes, cents, dollars, how many, how much, change, trade.
Probability: chance, statistics, attribute, likelihood, possible outcomes, certain, likely, possible, unlikely, impossible, experiment.
Mass: grams, kilograms, tonne, more than, less than, estimate, weigh, measure, weight, heavy, light.
Length: centimetres, metres, kilometres, length, long, short, tall, small, longest, shortest, middle point, number line.
Place Value: ones, tens, hundreds, thousands, tens of thousands, number line
Time: hour, minute, hand, second.

Tune In	Target Teach	Try Out	Tune Up	Take Off	Tie Together

$\begin{gathered} \text { Weeks } \\ \& \\ \text { Dates } \end{gathered}$	Learning Focus				
	Number \& Algebra	Measurement \& Geometry	Statistics \& Probability	Activities and Resources:	Assessment Charts
1	Number Sense - connecting numerals, objects and drawings Name, represent and order numbers, including zero to at least 20, using physical and virtual materials and numerals (VC2MFN01) - responding to a request to collect a quantity of objects or reading a numeral and selecting the associated quantity of items from a collection to match the number required; for example, collecting 9 paintbrushes after hearing the word 'nine'	Mass Identify and compare attributes of objects and events, including length, capacity, mass and duration, use direct comparisons and communicate reasoning (VC2MFM01) - using language to describe the measurement attributes of length, mass, capacity and duration, and connecting the words with the appropriate		Tuesday-Wednesday: Unit 2 - Showing numbers in different ways (Inquisitive). Lesson 1 Connecting numerals, objects and drawings. Thursday: Number 7 focus Friday:	Anecdotal notes

- recognising the order in the sequence of numbers to 20 and identifying the number that is 'one less' than a given number and the number that is 'one more'; for example, playing instructive card games that involve reading and ordering number cards, or using counting songs, storybooks and rhymes to establish the forwards and backwards counting sequence of numbers in the context of active counting activities
- understanding and using terms to indicate ordinal position in a sequence; for example, filling in the missing term in 'first', 'second', 'third', ... 'fifth' ..., or creating a number track using cards with the numerals zero to 20 and describing positions using terms such as 'first', 'last', 'before', 'after' and 'between'
- recognising, writing and reading numerals written on familiar objects; for example, recognising and reading numerals in images, text or illustrations in storybooks, or writing a numeral on a container as a label to show how many objects it contains
- connecting quantities to number names and numerals when reading and reciting stories and playing counting games or determining and reasoning about the size of sets of objects within Aboriginal and/or Torres Strait Islander Peoples' instructive games, for example, Segur etug from Mer Island in the Torres Strait region

Number Sense - Number Composition
Partition and combine collections up to 10 using part-part-whole relationships and subitising to recognise and name the parts (VC2MFN04)

- recognising numbers represented in physical or virtual ten-frames, and describing their reasoning: 'It's 7 because there is 5 there and 2 more'
- partitioning collections of up to 10 objects in different ways and saying the part-partwhole relationship; for example, partitioning a collection of 6 counters into 4 counters and 2 counters and saying, ' 6 is 4 and 2 more, it's 2 and 4', then partitioning the same collection into 5 and 1 or 3 and 3
- representing part-part-whole relationships in numbers up to 10 using physical or virtual materials; for example, identifying numbers represented by dots in standard number configurations such as on dominoes and dice by recognising parts that form the whole
- exploring number groupings in Aboriginal and/or Torres Strait Islander Peoples' counting systems and the different ways of representing these groupings to form and partition numbers, applying this to quantify collections of objects in the environment on Country/Place up to 10
attribute; for example, using words like 'tall', 'short', 'wide', 'long' and 'high' to describe the attribute of length
- directly comparing pairs of objects to say which is longer/shorter, and explaining or demonstrating how they know; for example, standing back-to-back to determine who is taller or choosing to line up the bases of a spoon and fork to decide which is longer and explaining why
- starting 2 events at the same time to decide which takes longer; for example, putting on a pair of sandals with buckles or Velcro, describing the duration using familiar terms and reasoning, 'I took a longer time because l'm still learning to do up my buckles'
- directly comparing pairs of everyday objects from the kitchen pantry to say which is heavier/lighter; for example, hefting a tin of baked beans and a packet of marshmallows or comparing the same pair of objects to say which is longer/shorter and discussing comparisons

Length
Identify and compare attributes of Identify and compare attributes of
objects and events, including length, objects and events, including length,
capacity, mass and duration, use direct comparisons and communicate reasoning (VC2MFM01)

- using language to describe the measurement attributes of length, mass, capacity and duration, and connecting the words with the appropriate attribute; for example, using words like 'tall', 'short', 'wide', 'long' and 'high' to describe the attribute of length
- directly comparing pairs of objects to say which is longer/shorter, and explaining or demonstrating how they know; for example, standing back-to-back to determine who is taller or choosing to line up the bases of a spoon and fork to decide which is longer and explaining why
- starting 2 events at the same time to decide which takes longer; for example, putting on a pair of sandals with buckles or Velcro, describing the duration using familiar terms and reasoning, 'I took a longer time because I'm still learning to do up my buckles'
- directly comparing pairs of everyday objects from the kitchen pantry to say which is heavier/lighter; for example, hefting a tin of baked beans and a packet of marshmallows or comparing the same pair of objects to say which is longer/shorter and discussing comparisons

3	Number Sense - Number Composition Partition and combine collections up to 10 using part-part-whole relationships and subitising to recognise and name the parts (VC2MFN04) - recognising numbers represented in physical or virtual ten-frames, and describing their reasoning: 'It's 7 because there is 5 there and 2 more' - partitioning collections of up to 10 objects in different ways and saying the part-partwhole relationship; for example, partitioning a collection of 6 counters into 4 counters and 2 counters and saying, ' 6 is 4 and 2 more, it's 2 and 4 ', then partitioning the same collection into 5 and 1 or 3 and 3 - representing part-part-whole relationships in numbers up to 10 using physical or virtual materials; for example, identifying numbers represented by dots in standard number configurations such as on dominoes and dice by recognising parts that form the whole - exploring number groupings in Aboriginal and/or Torres Strait Islander Peoples' counting systems and the different ways of representing these groupings to form and partition numbers, applying this to quantify collections of objects in the environment on Country/Place up to 10			Tuesday - Wednesday Unit 4 - Number Composition Lesson 2 - Introduction to part whole model Thursday: Number 9 focus Friday: Length	Entry ticket.
4	Number Sense - Number Composition Partition and combine collections up to 10 using part-part-whole relationships and subitising to recognise and name the parts (VC2MFN04) - recognising numbers represented in physical or virtual ten-frames, and describing their reasoning: 'lt's 7 because there is 5 there and 2 more' - partitioning collections of up to 10 objects in different ways and saying the part-partwhole relationship; for example, partitioning a collection of 6 counters into 4 counters and 2 counters and saying, ' 6 is 4 and 2 more, it's 2 and 4 ', then partitioning the same collection into 5 and 1 or 3 and 3 - representing part-part-whole relationships in numbers up to 10 using physical or virtual materials; for example, identifying numbers represented by dots in standard number configurations such as on dominoes and dice by recognising parts that form the whole - exploring number groupings in Aboriginal and/or Torres Strait Islander Peoples' counting systems and the different ways of representing these groupings to form and partition numbers, applying this to quantify collections of objects in the environment on Country/Place up to 10			Tuesday - Wednesday Unit 4 - Number Composition Lesson 3 - five and some more Thursday: Number 10 focus Friday - counting collections - outside in the enviroment	
5	Number Sense - Number Composition Partition and combine collections up to 10 using part-part-whole relationships and subitising to recognise and name the parts (VC2MFN04) - recognising numbers represented in physical or virtual ten-frames, and describing their reasoning: 'It's 7 because there is 5 there and 2 more' - partitioning collections of up to 10 objects in different ways and saying the part-partwhole relationship; for example, partitioning a collection of 6 counters into 4 counters and 2 counters and saying, ' 6 is 4 and 2 more, it's 2 and 4', then partitioning the same collection into 5 and 1 or 3 and 3 - representing part-part-whole relationships in numbers up to 10 using physical or virtual materials; for example, identifying numbers represented by dots in standard number configurations such as on dominoes and			Tuesday - Wednesday Unit 4 - Number Composition Lesson 4 - combinations from 6- 10 Thursday: Number 11 focus Friday - counting collections - outside in the enviroment	Exit ticket.

